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INTRODUCTION

This project was motivated by A.H. Klopf's [1] insightful obser-
vation and proposition on the functioning of the neuron cell and the
nervous system in general, and the work done by Professor A. Barto
and his associates at the University of Massachusetts in an effort
to design and computer-simulate networks and systems of networks
operating on the principles proposed by Klopf.

Klopf hypothesized that the neuron is an adaptive heterostat
element, operating in such a manner as to maximize the frequency of
occurrence of certain inputs deemed desirable and minimize the fre-
quency of occurrence of those undesirable. It achieves this by
appropriately modifying its transfer characteristic so as to make it
easier to respond to desirable inputs. Thus, the neuron learns to
exert some control over its output through an input-output associa-
tive process and adaptation so as to enhance those conditions that
result in desirable output.

Nature is a supreme teacher and observing how it works has al-
ways yielded new design ideas. We believe that it would be desirable
to build controllers for physical systems that could operate in this
manner. Such controllers would learn to develop a control law with-
out requiring to know the dynamics of the controlled system.

Barto and his associates [2] investigated the feasibility of us-
ing goal seeking elements operating in the mode theorized by Klopf
as components of intelligent machines. Computer simulation models
were developed for goal seeking elements, and it was demonstrated
that goal seeking nets could be built out of goal seeking components.

Barto's work is an excellent study on adaptation and learning
problems and learning rules, with special emphasis given to Klopf's

heterostat. In a system operating in accordance with this reinforce-
ment learning rule, the weighting function at the i-th input,




Ni(t), is enhanced if excitation of the i-th input at t leads to
excitation at the i-th input « seconds later, the enhancing function
e(r) decaying exponentially with . Thus T 1is a cause-effect
measure, a small = indicating a strong "link" between the i-th input
and the output it produces.

0f the several goal-seeking systems of goal-seeking components
developed and studied by Barto, those described as "learning with a
critic" were judged to be potentially more applicable to our engi-
neering world.

Systems described as "learning with a teacher" require that the
controller "knows the answers to a set of questions", i.e., knows
what the response to a set of inputs should be and provides the sys-
tem with appropriate corrective signals. In most engineering sys-
tems, this operation requires more information than 1is usually
available. Learning with a critic, on the other hand, requires only
that an observation be made as to whether the output is changing in
the right direction. One could reasonably expect that such infor-
mation should be available in many engineering applications.

The most promising learning network Barto developed that demon-
strates problem solving/control capability is the ASE-ACE learning
loop [3].

In this system, two elements are used to implement a learning
strategy as follows. One element, termed the Associative Search
Element (ASE) constructs associations between the input and output
by searching under the influence of reinforcement feedback. A second
element, the Adaptive Critic Element (ACE) constructs a more infor-
mative evaluation function than reinforcement feedback can provide,
thus improving the performance of the ASE when operating alone.
Both of these neuron-like adaptive elements, which constitute the

controller of the learning network, were suggested by the work of
Klopf.




The example chosen by Barto on which to implement the ASE-ACE
learning net was the adaptive learning problem known as "BOXES",
developed by Michie and Chambers. BOXES requires that the system
learn to balance a pole which is pivoted on top of a cart, by apply-
ing a force # on the cart, which is free to move along a straight
line path. The reason for choosing BOXES was that it provided a good
learning control problem with a solution available, hence the im-
proved performance resulting from the use of ASE-ACE learning net
could be concreteiy demonstrated.

The specified goal of this project was:

1. Develop an understanding of Klopf's work related to neuron-
like adaptive system behavior.

2. Understand Barto's work on realization/simulation of neuron-
1ike adaptive learning networks.

3. Investigate possible implementation of these nets in physical
systems, specifically in synthetic aperture radars.

This report documents the progress made toward that goal.

Section 2 of this report discusses the pole-on-cart control pro-
blem, which is used for testing the learning algorithms, modified
slightly to conform better to engineering concepts. It also de-
scribes the implementation of the ASE-ACE controller at ERIM and the
studies on ASE-ACE performance.

Section 4 investigates the use of ASE-ACE in minimizing arbitrary
functions and Section 5 indicates how the ASE-ACE controller could
be applied in the SAR autofocus praoblem.

Finally, Section 7 describes the possible application of a learn-
ing net, 1ike the ASE-ACE, to a robotics problem.
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2
IMPLEMENTATION OF THE ASE-ACE NET

2.1 THE POLE-ON-CART CONTROL SYSTEM

Since the pole-on-cart system is used to test the learning al-
gorithms developed, it 1is wuseful to have the system and control
approach suggested by Michie and Chambers described in some detail.

Consider a system consisting of a cart with a pole pivoted on
top of it. The cart is constrained to move along a straight line
path, say the x-axis, on the x-y plane. The pole is so pivoted that
it can move on a plane perpendicular to the x-y plane, through the
x-axis. Let the allowable linear motion of the cart be the interval
(-X, X) while the pole's allowable angular displacement is (-e, o)
(see Figure 2.1).

A motor in the cart can move it along the x-axis by applying a
constant force F in either direction. The control goal is to keep
the pole inside the allowable e limits while the cart stays within
the x-bounds. To do this, sensors measure the cart's linear position
and velocity and the pole's angular position and velocity at discrete
intervals t = nT and a force F or -F is then applied at these inter-
vals. This could be the result of a +V or -V voltage applied to the
motor. If the system reaches the extreme positions %X or #e, the
experiment ends. The magnitude of X, e, and F are not important here
and could be so chosen as to correspond to appropriate values.

The state of the system at t = nT is described by the vector
s(nT) = (x, X, @, ©), where each state-variable is evaluated at t =
nT. Since S is measured at discrete intervals, it is convenient to
discetize the state space by arbitrarily allowing a finite number of
levels in each state variable. If N1, NZ’ N3, N4 are the
allowed levels in the variables x, v, o, and w, respectively, the

state space will have exactly (N1N2N3N4) possible states.
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There are two basic assumptions that have to be kept in mind when
designing a controller for this system. First, knowledge of system
dynamics, i.e., mathematical model or transfer function for the sys-
tem is not available. Second, a learning system improves its per-
formance through evaluation of its experience. Thus, learning re-
quires long-term memory to allow comparisons of results of actions
taken in the past in response to existing conditions. On the basis
of this comparison appropriate actions are taken. For such a learn-
ing system, then, the controller is the learning network.

In the "BOXES" example, a controller for this system was designed
as follows. We choose a controller with at least as many memory
cells (boxes) as the number of system states. Each cell is addressed
by a state and in it we store the action to be taken by the system,
*F . when the sensed system state corresponds to the cell's address.

Initially, the system does not know what is the correct instruc-
tion to give. So the system is initialized by storing values #F at
random in the cells. When control action starts, the system sensor
read the state of the system at regular intervals t = nT. The system
then goes to the memory cell addressed by that state and reads what
action is to be taken. At that instant, a clock in the cell starts
counting. This process continues until the system fails, i.e., a
state variable exceeds the extreme values #X or #e and control action
stops. The clock readings in each cell are the time until failure
(TUF) from the moment the cell was entered. This TUF is now stored
in the cell and the instructions in all entered memory cells during
the first control action are reversed, *F to -F and vise versa,

The process is repeated but now at the end of the second control
action there are two TUF readings for those cells that were entered
the second time. We leave in the cell as control instruction which-

ever instruction leads to longer TUF, together with the value of that
TUF.
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This control strategy leads to memory settings that favor maxi-

mum TUF for the system and after several control actions the system
"learns" what to do to stay inside the prescribed bounds.

A system operating with this control law has been computer-
simulated by Barto and shown to work well [3]. After about 100 con-
trol actions the system can take on the average 4,000 steps before
failure occurs.

The described control strategy is not optimal. The system is
not learning fast. Actually, since learning takes place when the
system fails, the learning process slows down as the system learns.
Barto corrected this through the introduction of the ASE-ACE
adaptive-learning network. '

2.2 THE ASE-ACE ADAPTIVE  CONTROLLER

Figure 2.2 shows a system with transfer function G controlled by
the ASE-ACE learning net. The state vector s of the system is sam-
pled at intervals T sec. and is fed into a decoder which is used to
discretize the state space of s into a finite number of states and
convert s into a binary vector X, whose components are all zero ex-
cept the one corresponding to the state of the system at the sampl-
ing instant t = nT. The dimension of X is equal to the number chosen
for the discrete states of the space of s.

The vector X is fed into the ASE-ACE. At the Adaptive Critic
Element, its adaptive weighting vector v, the input vector X and the
external reinforcement function r(t), are used to generate the in-
ternal reinforcement function ?(t) that inputs the ASE, in accordance
with the rule:

T(t) = r(t) + yp(t) - p(t - 1)
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y is a non-negative constant less than or equal to one, and the
weighting vector v updates in accordance with

Vot 1) = vi(t) ¢ e?(t)’x‘i(t)

where ?i(t) is the value of a trace of the input variable X; at t,
evaluated from:

Rt +1) = B?i(t) + (1 - 8)x,(t)

and 8 and & are positive constants.

At the Associative Search Element, the input vector X generates
the output y:

y(t) = #
depending on whether [Z"ixi + n(t)] is nonnegative or negative,
respectively, n(t) is additive system noise and the weighting vector
w updates in accordance with the rule:

wilt +1) = w(t) + a’r\'(t)ei(t)

The function ei(t) is the eligibility at t of path i, adapting in
accordance with the rule:

e (t +1) =se,(t) + (1 - 8)[y(t)x,(t)]

and @ > 0; 0 < B8 < 1. Figures 2.3 and 2.4 show in block diagram form
the implementation nf the ASE-ACE algorithms at ERIM.

The way ASE-ACE exercise control over a given system G is as
follows. Let us assume that we wish to maintain the values of the

state variables sj and Sk of the system within certain bounds.

10
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We use the external reinforecement variable r(t) to penalize the
o system when either s; or sy take values outside the desired
P range. When this happens, we will say that the system has failed
e and r(t) is set equal to -1. Otherwise, r(t) = O.

With zero initial values for the system state variables and the
P2 ASE-ACE variables w, v, e, x, the system is activated and goes
through a sequence of admissible states, until it finally fails,
-~ either in sj or s,. At that time, the system state variables ;
’ and % are reset to zero, but w and v are left untouched. Thus, when
~ the next trial for the system starts, the initial values of w and v
are the final values from the previous trial. Hence, the experience,
or learning, of the system at time t is stored in the values'wi(t)
Yo and vi(t). After a few trials, the system learns how to operate
without failure, i.e., learns how to operate while maintaining the

- state variables within the desired bounds.
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350 The previously described ASE-ACE system was independently simu-
\ ) lated at ERIM, though the University of Massachusetts program was
given to us.

When running the ERIM pole-on-cart simulation, a different set
- of pole-cart parameters than those wused by the University of

e Massachusetts was selected. This was because an error was found in
AN

':}j the University of Massachusetts computer program, which when cor-
'f& rected made it impossible for the ASE-ACE to learn, since the pole

hit the boundaries in one sampling interval. This problem was cor-
rected by using a pole length of 10 meters instead of 0.25 meters.
A1l other parameters were the same as used by the University of
Massachusetts. The problem could also have been corrected by using
a smaller sampling interval so the pole moved less between samples,
but the former approach was considered preferable, since it allowed
greater flexibility in the choice of sampling period.
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Our results substantiate that Barto's ASE-ACE controller after a
few trials can indeed learn to keep the pole balanced. Figure 2.5
shows a typical system learning curve. It is a plot of "no. of steps
to failure for trial k" versus "trial number." If the system learns,
the curve should have a positive slope, the slope being a measure of
the rate of learning of the system. In this example, the run was
terminated during the 28th trial, after the system exceeded ten
thousand steps without failure. When this happens, the computer is
instructed to cut off. The system has learned. Several runs were
made with different initial seed values in the noise generator pro-
gran, but with the same noise standard deviation. The resulting
curves were very similar, demonstrating a consistent system behavior.
The average of these runs is plotted in Figure 2.6.

It is useful at this time to examine briefly the concept of
learning. Specifically, how should one measure the performance of a
learning system? Figure 2.7 shows the learning curves of two hypo-
thetical systems. System no. 2 is initially learning faster than
system no. 1, but after several trials, no. 1 performs better.

Had we decided to declare that a system has "learned" when it
exceeded S steps without failure, it would appear that system no. 2
is preferable to no. 1, because it reached and exceeded S steps in
fewer trials. Yet, assuming that the sampling period is the same
for both systems, it took longer for system no. 2 to reach that level
of learning, because each trial it went through lasted longer. The
time to learn for each system is proportional to the area under its
learning curve and is equal to:

N-1
j=1

where SFJ = the number of steps to failure for trial j,

14
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Ts = the sampling period, and

- N = the trial number at which the system exceeded S steps
%) without failure.

)
.l

What makes a system better, then, depends on the apptication.
It appears, however, that the time-to-learn concept is a more mean-

Y ingful measure of learning performance.
\Q
N 2.3 PERFORMANCE STUDIES

Understanding how the ASE-ACE controller adapts and learns is

h vital, if we are to apply it successfully. The following studies

» therefore were carried out:

¥

- a. Observation of the ASE-ACE system variables throughout the

- learning process.

2

'; b. Effect of sampling period on system performance.

<

" c. Effect of noise level on performance.

;. d. Effect of a, B, Y, ¢ parameter values on performance; optimal

2. values.

o e. Effect of state-space structure on performance.

» 2.3.1 ASE-ACE SYSTEM VARIABLES BEHAVIOR DURING LEARNING

i- Close observation of the variation of the system variables, w,
v, e, x and the input vector X through a learning cycle is most
instructive.

LY

N After several runs were made, it was observed that system states

] A

&

no. 4 and 10 were the most frequented states. The system "walked
& through" several states, but was coming back to no. 4 and no. 10
' regularly. The system does not need to go through all states to
learn. With every new trial, it visits a few new states, but most
of the time goes through states that were visited previously. By

18
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the time the system took 10,000 steps it had gone through seventy-
eight different states, out of 162 total.

Plots were made of the input vector X(t) and variables w(t),
e(t), v(t), g(t) for states no. 4 and no. 10 throughout ten consecu-
tive trials, for a total of 299 steps (see Figures 2.8 to 2.17).
The effect of punishment at each failure on W, and Vs is clearly
evident, as is the effect of the eligibility function e; on w,
and of the trace X; function on Ve Phase plots, i.e., X vs. x
and & vs. o were also plotted for several trials (Figures 2.18,
2.19). These plots illustrate thie sysiem benavior during the trial.
It is seen that when the sytem has learned, it goes through a cycle

of states over and over again, as should be expected.

2.3.2 EFFECT OF SAMPLING PERIOD

The sampling period was certainly expected to have a significant
effect on the system's learning behavior for two reasons. First,

there must be a minimum sampling vate, which is dictated by the sys-
tem bandwidth. Second, the nature of the learning system is such
that at each sampling instant, a decision is made as to whether a ‘
force +F or -F should be applied, and also the system variables are |
updated. Thus, shorter sampling period implies tighter control and

possibly improved learning.

Runs were made with sampling periods, TS, of 0.025 sec., 0.05
sec., 0.075 sec., 0.1 sec., 0.15 sec. and 0.2 sec. and the system
was allowed to go through fifty trials or 10,000 steps. The results
are shown in Figures 2.20 to 2.25. The system learning behavior was
approximately the same for TS = 0.025 sec. and TS = 0.05 sec.,
in both cases the system exceeding 10,000 steps by trial no. 30.
The 1learning rate decreased as TS increased, the system finally
failing to learn when TS = 0.2 sec. With TS = 0.15 sec., the
system showed signs of slow learning by the end of the fiftieth

D S N . e
IR I A IR ST AN - 'J




LRt i e AR I A A R A e i it i ‘S e = i S S A S S R A Pt S A R . _'.r'.‘!

............... R SO N ST T S SR

trial. Longer runs were made and it was verified that indeed the
system is slowly learning (Figure 2.24). The results are summarized
in Figure 2.26, where the maximum number of steps in fifty trials is
plotted against the sampling period.

2.3.3 EFFECT OF NOISE LEVEL

Additive noise is introduced in the system at the ASE and affects
the output, y, when the path weighting values are small. This is
certainly true the first time a path is entered. Later, as the
eligibility function gets into the picture wi's assume larger
values and the effect of noise diminishes.

Several runs were made with noise standard deviation values of o
= 0.01, ¢ = 0.1, and o = 1.0. Figures 2.27, 2.28, and 2.29 show
these results, respectively, and it is seen that significant increase
in the noise level does inhibit the learning process, though the
learning curve for ¢ = 1 has a positive slope.

Noise has been considered by Barto, as possibly beneficial to
the learning process of the system, because it gets the system to
more states quicker, and it was speculated that the sooner a system
visits several states the faster it will establish the proper path
values. On the other hand, however, once a system has learned it
should operate by going continuously through a small number of states
in a cyclic fashion. If the weighting path values are small, noise
may tend to bounce the system out of the cycle, hence make it less
stable and slower in learning.

2.3.4 EFFECT OF a, B, v, & PARAMETER VALUES

Use of a, B, v, & parameter values chosen by Barto, et al., in
their runs were based on logical arguments as to what kind of be-
havior seemed desirable for the eligibility function, e, trace .
function,'?, and internal reinforcement function, . It was felt,
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however, that these values had to be tested and verified experi-
mentally. Accordingly, system performance was evaluated over a range
of a, B, v, § values to determine those values yielding optimal per-
formance, i.e., time to learn.

Several runs were made over a wide range of values for each
parameter for two different sampling periods, TS = 0.025 sec. and
Ts = 0.1 sec. The results are shown in Figures 2.30 to 2.33.
These graphs clearly show that the values selected by Barto gave
optimal performance when TS = 0.025 sec. For Ts = 0.1 sec.,
however, best performance was obtained for a = 1,000, 8 = 0.85, vy =
0.85, and § = 0.15.

2.3.5 EFFECT OF STATE SPACE STRUCTURE

An important question that must be answered is the effect of
system state space structure on the learning behavior of the system.
Barto has divided in the pole-on-cart example the state space into
162 "boxes", as was done originally by Michie and Chambers. This
division is arbitrary and was suggested by the need to keep the num-
ber of states small, hence the computation time short.

If it were true that a system in order to learn needs to visit a
large number of states, then the greater the number of states into
which the space is divided the longer it would take for the system
to learn. Furthermore, the finer the division the grid is cut into,
the finer the control exercised can be. At the same time when the
grid gets too fine the system may go through several states between
steps, thus without initializing them. This would negate any pos-
sible advantages a finer grid could provide. Thus there can be a
relationship between sampling period and grid size, if advantage of
a fine grid is to be made.

Testing of the effects of grid size have not been completed, but
preliminary results seem to substantiate the relationship between
grid size and sampling period.

21
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{ i ASE-ACE COMPARED TO THE 3TIME OPTIMAL CONTROL LAW
3&: During this study, it was observed that there is a similarity
'iﬁ between the ASE-ACE as a controller and the time optimal control law
. for a double integral plant. Figure 3.1 illustrates the time optimal
?Ef control problem for a simple double integral plant. Two integrators
2;- in series are driven by a control, u(t), and the objective of the
- control strategy is to drive the outputs of both integrators to zero

in the least amount of time.

i:f In Reference 4, it is shown that the time optimal control law
;‘? for the double integral plant is the bang-bang controller where the
:? input always assumes the value of either +1 or -1. Figure 3.1 is a
;:. plot of the state space for the double integral plant with the opti-
’Q A mal switching curve drawn in as a solid line. The optimal switching
;fz' curve is the set of all points (s], 52) which satisfy the re-
R . lationship Sy = - 1/2 |sZ|sz. The control u takes the value
5 of +1 whenever a point in the state space falls below the switching
:ﬁ curve or falls on the portion of the switching curve in the lower
.:% right quadrant. The control u takes the value -1 whenever a point

in the state space falls above the switching curve or falls on the
e portion of the switching curve in the upper left quadrant. For any
: initial conditions, the two integrator outputs are driven to zero
:fj after the control has sequenced either from +1 to -1 or -1 to +1.

Ideally, after the double integral plant has been driven to zero,
- it will stay there until the next set of initial conditions. In
practice this will never happen. If there is any noise in the

Pl )
'.‘l'.‘.‘.

;5 measurements of $1 and s, or any time delay in switching, the

&T control system will go into a limit cycle about the origin. The size

o of the limit cycle will depend on the amount of noise or the amount

;;ﬁ of time delay in switching that exists. The time optimal controller

;ii does keep the output of the double integral plant bounded with time.
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The pole-on-cart system can be viewed as two double integral
plants which are coupled and driven by a common input. The pole
hinged on the cart is one double integral plant where the output of
the first integrator is the angular velocity of the pole and the out-
put of the second integrator is the angular position of the pole.
The cart on the track forms the second double integral plant where
the velocity of the cart on the track is the output of the first
integrator and the position of the cart on the track is the output
of the second integrator. Both double integrator plants are driven
by the force applied to the cart.

The ASE-ACE uses a control force to drive the pole-on-cart system
which takes only the values of +1 or -1. Therefore, the ASE-ACE is
driving two double integral plants with a bang-bang control. The
ASE-ACE is performing the function of the optimal control law shown
in Figure 3.1 for the single double integral plant. It must learn
for every region in the state space the proper direction to drive
the system. The ASE-ACE must, however, do this for a four dimen-
sional system.

Consider the optimal control law shown in Figure 3.1. Note that
there are closed and open sets of points for which the control action
is the same. Therefore, the state space could be divided up into a
set of regions referred to as boxes sometimes before, where all the
points in any box are associated with the same control action. Also
the problem could be restricted to some subspace of the state space
such that any point outside this region can never be an initial con-
dition and if the control law drives the system to this point, the
controller can be assumed to have failed to properly control the
system,

Consider now what would happen if instead of allowing the con-
troller to continuously observe the state of the double integral
pltant, the controller could only sample the state of the system

51
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f{ periodically. This can be viewed as introducing time delay into the
Q;\ system, which it 1is known will cause the controller to go into a
3;§ limit cycle about the origin. The size of the limit cycle will de-
jﬂi pend on how often the controller observes the state of the system.
itll If the controller observes the state of the system too infrequertly,
_‘_ the state of the system could exit the allowed region causing a
figi failure.
jiﬁi Comparing the pole-on-cart system controlled by the ASE-ACE to
= the double integral plant time optimal control problem, it would be
N expectd that the ASE-ACE can control the system if it learns a con-
Efél trol law similar to the one shown in Figure 3.1 and the final state
»;%S of the system should limit-cycle about the origin. This assumes the
-~ existence of a four-dimensional switching curve for the four-
P dimensional pole-on-cart problem,
e
:;é A final point of comparison between the time optimal control law
N and the ASE-ACE controller is that the ASE-ACE uses boxes of non-
{ uniform size. Figure 3.2 shows one method of defining regions of
§§£ the double integral state space where the control action is the same
ﬁ;ﬁ for every point in the region. Figure 3.2 shows a set of switching
i{fi curves (solid lines) passing through different points on the velocity
\{u axis and trajectories starting at the points imax and imin (dot~
N ted lines) for control actions +1 or -1. The regions formed by the
‘%?ﬂ intersections of the switching curves, trajectories and x-y axes con-
:\%g tain open sets of points which have a common control action. These
.' regions have different sizes and are not rectangular boxes. Forming
iﬁ:g these regions requires knowledge about the propagation of the system
i;:f for any control action and the optimal control law. In the absence
Ff, of such information, it is reasonable to divide the state space up
L;; into rectangular regions and regions of unequal size. Note that in
Z? using rectangular regions, any given trajectory may exit the subspace
":j;; defined by the rectangular regions and then re-enter at a later time.
:25 This event may not be marked as a failure if the trajectory exits
52
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the subspace because of velocity and not position. Situations can
arise where the state of the system is not in any of the defined
regions (boxes) but failure has not occurred. This cannot happen

with the regions defined in Figure 3.2.

Figure 3.3 shows how the ASE-ACE can be applied to the double
integral plant and Figure 3.4 is a plot of the state space of the
double integral plant after the ASE-ACE has learned. The state space
plot shows a limit cycle as previously predicted would happen. In
the limit cycle, the ASE-ACE only passes through four states so only
the weights for those four states must be learned.

It has been shown that the ASE-ACE as a controller for the .pole-
on-cart system is similar to the bang-bang controller for the double
integral plant. The ASE-ACE can be thought of as learning the
switching curve for a four-dimensional bang-bang controller. The
stability and performance of the ASE-ACE 1is expected to be very
similar to the stability and performance of the bang-bang controller.
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{ 4

e MINIMIZING A FUNCTION USING ASE-ACE

v

L

-4&{ Careful study of the ASE-ACE 1learning controller has led us to
o believe that there are potential applications of this system to
- several problems related to synthetic aperture radar. Examples of
B such problems are:

»~ ‘_..-|

-"4:

1. Higher order focus (autofocus)
2. Radar system design optimization
3. SAR moti.n compensation
o 4, Target detection and recognition
5. Phase reconstruction algorithm
6. Evaluation and analyzing of multiple error sources
7. Image matching.

2
‘s

wy
.‘ l. 'I
A A 2 A

A common characteristic of most of these problems is that they
o can be studied from the perspective of minimizing some performance
function. To apply the ASE-ACE to these problems, therefore, the

8

Q2

»
4 »

Zﬁﬁ general problem of minimizing a function must be put into the struc-
o ture that the ASE-ACE was designed to handle.

-~ 4.1 FIRST APPROACH TO MINIMIZING A FUNCTION

Aoy

ﬁgﬂ Two approaches to minimizing a function using the ASE-ACE have
‘2‘% been stuaied. Figure 4.1 illustrates the first approach that was

used to minimize a function, and shows a feedback system which is
stable only when the function F(XI) is identically zero. The

ki

»

variable X; represents the present estimate of the value of X that
minimizes the function F{X). Each iteration of the control system,
the value of XI is changed by the value of AI+1F(XI) where
Apsq s a positive real number. Unless F(XI) equals zero at
some point, XI will eventually grow without bound.
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FIGURE 4.1. FIRST APPROACH TO MINIMIZING A FUNCTION.
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The control path in the lower lefthand side of Figure 4.1 shows
how AI is computed. Using two consecutive values of F(XI) and
XI’ an estimate is generated for the rate of change of F(X) with
respect to X, DF/DX. If DF/DX is positive, A; is incremented by a
constant positive real number aA. This is a form of penalty. Un-
less F(XI) is decreasing, A; will grow unbounded and force X
to grow even faster with time. Initially, AI is set equal to aA.

I

The ASE-ACE algorithms noted in the lower righthand corner of
Figure 4.1 use a two dimensional state space consisting of AI and
XI' The output of the ASE-ACE algorithms has a value of 1 and can
be positive or negative. The ASE-ACE controls whether XI is in-
creased or decreased from its present value. In order for the
ASE-ACE to keep XI within bounds, it must drive F(XI) as close
to zero and as quickly as possible. If XI or AI exceed the
selected limits for the problem, the ASE-ACE has failed and it is
punished.

The control problem illustrated in Figure 4.1 is very similar to
the pole-on-cart problem. Both problems involve a basically unstable
system with at most one stable equilibrium point. Both problems also
involve two basic control variables. The variable XI can be com-
pared to the angle of the pole and the variable AI can be compared
to the position of the cart on the track. They differ primarily in
that the state space for the minimization problem involves two vari-
ables and the pole-on-cart involves four variables.

Figure 4.2 is a state space plot for the control system shown in
Figure 4.1 after the ASE-ACE has begun to learn how to control the
system. The vertical axis of the plot is AI and the horizontal
axis is XI' If the ASE-ACE is controlling the system properly,
the value of X should move to zero and stay near zero for the funct-
jon, X2 + 1, that was selected. In this case, the function is

never zero so there is no equilibrium point. The boxes shown in

A
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FIGURE 4.2. STATE SPACE PLOT FOR FIRST APPROACH TO MINIMIZING A FUNCTION.
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Figure 4.2 are the actual boxes used by the ASE-ACE and failure cor-
responds to the plot leaving the bounds of the plot region.

The state space plot shown in Figure 4.2 starts with an initial
value of XI equal to -3 and an initial value of AI equal to
0.01. The ASE-ACE has had several trials to learn prior to the trial
shown in Figure 4.2. Although the initial change in XI is away
from zero, XI does eventually move to zero, and no matter how far
it may get away from zero, it always moves back to zero. This trial
failed because AI exceeded the plot 1limits, but when it failed,
XI was near zero. Eventually, XI should move more rapidly to
zero and stay close to zero for a longer period of time.

4.2 SECOND APPROACH TO MINIMIZING A FUNCTION

Figure 4.3 is a block diagram of the second approach used to
minimize a function. In this case, the estimate of X that minimizes
F(X) is incremented by plus or minus aX where aX is a constant. The
state space of the ASE-ACE includes X, F(X), dF/dX and dF/d¥°.
Failure is defined as dF/dX being positive. Failure corresponds to
the value of the function increasing after any step. At the minimum
point, d2F/dX2 should be zero. This second approach is more
straightforward than the first,

Figure 4.4 is a plot of the values of X as a function of time,
or step number, for trial 97. Note that the ASE-ACE has learned to
decrease X until it has reached the value of zero which is the cor-

rect minimum for the function F(X) = XZ. The value of X was reset

to its initial value of 3 after each trial.
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5
APPLICATION OF ASE-ACE TO AUTOFOCUS

One potential application of the ASE-ACE learning algorithms to
synthetic aperture radar (SAR) that we would like to discuss in more
detail is the autofocus problem.

The objective of a SAR system is to produce a high resolution
image of some scene on the ground from an aircraft. A strong point
target in the scene will look like a bright spot in the image. The
width of the bright spot is a function of the basic resolution
capability of the SAR and the amount of quadratic phase error in the
system. One source of quadratic phase error is the motion compen-
sation system. Position measurement errors that are a quadratic
function of time cause quadratic phase errors.

Figure 5.1 illustrates the application of ASE-ACE to cancel the
quadratic motion measurment error. The upper portion of Figure 5.1
represents the motion measurement chain of the motion compensation
system, consisting of a motion sensor (inertial navigation unit)
followed by two integrators. The motion sensor measures the trans-
lational acceleration along the radar line-of-sight. The accelera-
tion measurement is integrated once to give a measure of line-of-
sight velocity and then a second time to give a measure of line-of-
sight position. Prior to starting the integration process, the in-
tegrators must be initialized to the best estimate of line-of-sight
velocity and line-of-sight position.

The quadratic motion measurement error is caused by any bias in
the acceleration measurement and any error in the velocity initial
condition. An error in velocity will cause position to grow lin-
early with time and an acceleration bias will cause position to grow
quadratically with time. The objective of the ASE-ACE is to keep
the velocity and position measurements within the expected bounds
over the aperture time of the radar. The ASE-ACE output is inte-
grated to give a bias correction to the acceleration measurement out
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ji¥ of the motion sensor. If the bias integrator output equals the
k_. motion measure bias and is opposite in sign, the velocity and posi-
o tion integrators will stay within bounds.

:;- There 1is an alternate approach that can be used to solve the

autofocus problem using the ASE-ACE. Instead of giving the ASE-ACE
the velocity and position motion measurements, the 3 dB and 15 dB
- IPR widths can be measured in the image processor and used as inputs
Ciﬂ to the ASE-ACE. The SAR aperture time window could be slid along in
tim and a sequence made on the same poin target. The ASE-ACE would
still drive the bias integrator in the motion measurement chain.

v _'!*}:,

This would give better performance but would be more difficult to
implement.
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o DEFINING AND CHANGING BOXES
:2 A different approach to defining the boxes used by the ASE-CE
h than implemented by Barto, et a].1 has been implemented in this

ASE-ACE algorithms studied by ERIM. This approach can be best illu-
h strated by defining the four vectors x., X;, @, and 8, as shown below
N using x; as an example

1 if cart-position is in X-region 1

;: X; = |1 if cart—position is in X-region 2
> 1 if cart-position is in X-region 3
' The elements of x, take only the values 0 and 1 and each element
:-_: corresponds to one region. Only one element of s; can be 1 at any
- given instant of time. A similar definition holds for £ , 8, and ;.
;’.': With these preliminary definitions out of the way, the following vec-
{‘ . tor x: can be defined
L
- k.
’ X! =
N 1 %
L
&)

This vector 11' uniquely defines the state of the pole-on-a-cart to
within the resolution of the selected quantization levels (region
widths).

. The vector %4 used by Barto can be obtained from the vector X by
multiplying L; by a matrix A and selecting all the elements of the

.t resulting vector to be zero except for the element that exactly

;f equals 4. Each row of A has only 4 non-zero elements equal to 1 and

::: all the rows are independent. A typical A matrix would have the

by form:

.

*

>
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o o1 o 0o 0 O O 1 0 0 1 0 0 1

The matrix A combined with the 1imiting process can be viewed as a

mapping from an m-dimensional space to an n-dimensional space where
n is greater than m.

Consider now the problem of changing the sizes of the boxes by
redefining the regions used for x, %, @ and & during the process of
running the ASE-ACE. It will be assumed that the change is always
towards smaller boxes (i.e., more boxes). After this change, it is
important to retain the information learned which is stored in the
weighting vectors Y4 and LI To do this, the following vectors
are defined.

<
[}

-1
t t
Y3 [ﬂ]ﬂ]] Ay,
-1
t t
L [ﬂ]ﬂ]:l LY.P
t -1

The matrix AjA; will always be invertible and [AtA At defines a

z—
n

—1-1
unique mapping of one vector into another vector.

At this point, it will be assumed that the change in box sizes is
accomplished by cutting each region of x, %, e, & in half, thirds,
fourths, etc. If they are cut in half, the vectors vi and wi can be

i
doubled in size as shown below:
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Vi [ i

Yy "

V2 "2

v, W)

Vi (new) = 2 Wi (new) = 2
Vm "

v' w'

i m m

The first element of v: becomes the first and second element of vi
(new) and the second element of v; becomes the third and fourth ele-
ment of 1;. (new), etc. 1In a similar manner, 1;. is redefined. Once

this is done, then the starting values for v; and W correspond-
ing to the smaller boxes are:

Y4 (new) =L\_21;. (new)

Ws (new) =Azw1! (new)

Where A, 1is the value of the A-matrix for the original boxes and
A, is the value of the A-matrix for the smaller boxes. This pro-

cedure will not work if the box sizes are changed by arbitrarily re-
defining the regions.

The objective of changing the size of the boxes during a run is
to tighten up the control and keep the pole closer to zero. The
larger boxes would be used initially to achieve control of the pole
and keep it from exceeding the specified limits. The smaller boxes
would be used in conjunction with penalties within the boxes to keep

the pole as close to zero as possible and possibly to keep the cart
as close to zero position as posible.

N




7
APPLICATION OF ASE-ACE TO A ROBOTICS TYPE OF PROBLEM

We will now describe a control problem which has some of the
characteristics of a robotics problem which is suited to the appli-
cation of an ASE-ACE type of controller. The problem is illustrated
in Figure 7.1 which shows a mass at the end of a rod which rotates
in a two-dimensional coordinate system. The length of the rod is
variable and the rod is flexible. The objective of the problem is
to move the mass M from one point in space to another point in space
with minimum bending of the rod. There is very little system damp-
ing, so once bending is excited, it continues making it impossible
to obtain the desired steady state conditions.

7.1 RIGID DYNAMICS

The controller for the system applies a fixed torque to rotate
the rod. The direction of the torque can change, but not the magni-
tude. The angular acceleration of the rod, e, is equal to:

L 1Y T
e =
Mr
2

2 _ 2
£f

r= X +Y

where Xf and Yf are the desired final coordinatees of the mass.
It is assumed that the rod is extended before being torqued. The
force on the mass is F = Mre, which can be rewritten as:

F=T/r'

The force on the mass is directly proportional to the applied torque.
The X, Y-coordinates of the mass at any instant of time are:

X =r cos (o)
Y =R sin (o)

Therefore, X and Y are nonlinear functions of e.

73
PREVIOUS PAGE
IS BLANK




e v gt an dira g AL Sran asmn Bl Sl r.._-. i Padiabe e« . are aAreex .'-:‘-T"‘":"““"“‘."-.“‘1
@ Qa W@ o8 0 0 Te 0 e e e T s e LN, RS R ¥ -, LSRR PO I e M e R F S
- - . - - - - . - . - . . - . - . - - - . - - - - - - - -
«®e Vo - Lt Lt e
.t
CN
A
.
..“.I
.

PROBE POSITIONING WITH BENDING.

‘e
FIGURE 7.1.
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0 7.2 BENDING
{
.. It will be assumed that bending can be modeled as a resonant
o circuit. The bending, dz, is equal to:
:-,
I.{
o ST+ stbs + Nb
ﬁii in terms of Laplace transforms. The bending model is, therefore,
- defined by the bending frequency, wb, and the damping coefficient,
" §. Once dz has been computed, the true values of X and Y become:
) X =r cos (8) - dz sin (e)
N
3 Y = r sin (e) + dz cos (o)
S
'—; Even if e and r are constants, dz will not be constant so X and Y
= will not be constant.
o 7.3 STATE SPACE DEF INITION
‘\\ For this example problem, it is recommended that the state space
Eﬂ consist of e, &, dz, and r. The variables o, 8, and r are used since
~Q they are the natural quantities expected to be used by the control
‘
N law. The variable dz is added since it will be used to determine
2 failure. Failure will be defined as dz exceeding positive or nega-
12 tive limits.
W
" The sample time used will have to be a function of Nb so the
Iy
A bending motion will be adequately sampled.
- 7.4 CONCLUDING REMARKS
o~ The proposed example is a simple learning problem, but it is
typical of certain practical design problems such as the cargo boom
j;; on the space shuttle. The rod in Figure 7.1 could be the cargo boom
ﬁl and the mass could be a satellite. The example problem would then
R reflect the problem of placing a satellite into orbit without
:3
b
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excessive residual motion. The same problem could also represent a
cargo boom on a ship unloading cargo. The problem, however, is sim-
ple enough so that it can be easily simulated and programmed into
the existing ASE-ACE computer coce.
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8
CONCLUSIONS AND RECOMMENDATIONS

It has been demonstrated that the ASE-ACE adaptive algorithm of
Barto can be used effectively in a learning mode to control a fairly
difficult mechanical system.

It was also shown that the ASE-ACE controller can be used to
minimize an arbitrary function. Since a large number of engineering
problems can be viewed from the perspective of minimizing some per-
formance function, it follows that the ASE-ACE adaptive/learning
algorithm may find wide engineering application.

It is suggested that two specific applications be examined in
the continuing study: (a) the SAR autofocus problem, and (b) image-
matching, which is a more difficult problem as it involves two-
dimensional performance functions.

Study of the learning characteristics of the ASE-ACE should con-
tinue, however, in order to fully understand the subtleties of the
algorithm. Specifically, the effect of the size of the state space
on performance and the possibility of using some punishment when the
system approaches failure to improve performance should be
investigated.

77

.....
------



APPENDIX

The dynamic behavior of the cart-pole system is described by the
following non-linear differential equations which were used in our
simulation:

F - mbe? sin e + u. sign (x) u 8
g sine + cos o T - 31
o0 C
e = z
4 m cos2 e
L)= - 205 ©
37 m. +m
c
F + m!.[éz sin @ - @ cos e] - ¥ sign (R)
X =
m.*m
where g = 9.8 m/sec2, acceleration due to gravity,
m. = 1.0 Kg, mass of cart,
m = 0.1 Kg, mass of pole, .
£ = 10 m, half pole length,

p. = 0.01, coefficient of friction of cart on track,

0.001, coefficient of friction of pole on cart, and

=
- O
[} ]

*#10.0, newtons, force applied to carts center of mass at
time t.

The equations were solved by numerical approximation using Euler's
method with a time step equal to or less than the sampling period.
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